Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 16(1): 75, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924159

RESUMO

Non-familial Alzheimer's disease (AD) occurring before 65 years of age is commonly referred to as early-onset Alzheimer's disease (EOAD) and constitutes ~ 5-6% of all AD cases (Mendez et al. in Continuum 25:34-51, 2019). While EOAD exhibits the same clinicopathological changes such as amyloid plaques, neurofibrillary tangles (NFTs), brain atrophy, and cognitive decline (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022; Caldwell et al. in Mol Brain 15:83, 2022) as observed in the more prevalent late-onset AD (LOAD), EOAD patients tend to have more severe cognitive deficits, including visuospatial, language, and executive dysfunction (Sirkis et al. in Mol Psychiatry 27:2674-88, 2022). Patient-derived induced pluripotent stem cells (iPSCs) have been used to model and study penetrative, familial AD (FAD) mutations in APP, PSEN1, and PSEN2 (Valdes et al. in Research Square 1-30, 2022; Caldwell et al. in Sci Adv 6:1-16, 2020) but have been seldom used for sporadic forms of AD that display more heterogeneous disease mechanisms. In this study, we sought to characterize iPSC-derived neurons from EOAD patients via RNA sequencing. A modest difference in expression profiles between EOAD patients and non-demented control (NDC) subjects resulted in a limited number of differentially expressed genes (DEGs). Based on this analysis, we provide evidence that iPSC-derived neuron model systems, likely due to the loss of EOAD-associated epigenetic signatures arising from iPSC reprogramming, may not be ideal models for studying sporadic AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Neurônios/patologia
2.
J Alzheimers Dis Rep ; 7(1): 957-972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849634

RESUMO

Background: While Alzheimer's disease (AD) pathology is associated with altered brain structure, it is not clear whether gene expression changes mirror the onset and evolution of pathology in distinct brain regions. Deciphering the mechanisms which cause the differential manifestation of the disease across different regions has the potential to help early diagnosis. Objective: We aimed to identify common and unique endotypes and their regulation in tangle-free neurons in sporadic AD (SAD) across six brain regions: entorhinal cortex (EC), hippocampus (HC), medial temporal gyrus (MTG), posterior cingulate (PC), superior frontal gyrus (SFG), and visual cortex (VCX). Methods: To decipher the states of tangle-free neurons across different brain regions in human subjects afflicted with AD, we performed analysis of the neural transcriptome. We explored changes in differential gene expression, functional and transcription factor target enrichment, and co-expression gene module detection analysis to discern disease-state transcriptomic variances and characterize endotypes. Additionally, we compared our results to tangled AD neuron microarray-based study and the Allen Brain Atlas. Results: We identified impaired neuron function in EC, MTG, PC, and VCX resulting from REST activation and reversal of mature neurons to a precursor-like state in EC, MTG, and SFG linked to SOX2 activation. Additionally, decreased neuron function and increased dedifferentiation were linked to the activation of SUZ12. Energetic deficit connected to NRF1 inactivation was found in HC, PC, and VCX. Conclusions: Our findings suggest that SAD manifestation varies in scale and severity in different brain regions. We identify endotypes, such as energetic shortfalls, impaired neuronal function, and dedifferentiation.

3.
Transl Psychiatry ; 13(1): 151, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37147277

RESUMO

Opioid use disorder (OUD) among pregnant women has become an epidemic in the United States. Pharmacological interventions for maternal OUD most commonly involve methadone, a synthetic opioid analgesic that attenuates withdrawal symptoms and behaviors linked with drug addiction. However, evidence of methadone's ability to readily accumulate in neural tissue, and cause long-term neurocognitive sequelae, has led to concerns regarding its effect on prenatal brain development. We utilized human cortical organoid (hCO) technology to probe how this drug impacts the earliest mechanisms of cortico-genesis. Bulk mRNA sequencing of 2-month-old hCOs chronically treated with a clinically relevant dose of 1 µM methadone for 50 days revealed a robust transcriptional response to methadone associated with functional components of the synapse, the underlying extracellular matrix (ECM), and cilia. Co-expression network and predictive protein-protein interaction analyses demonstrated that these changes occurred in concert, centered around a regulatory axis of growth factors, developmental signaling pathways, and matricellular proteins (MCPs). TGFß1 was identified as an upstream regulator of this network and appeared as part of a highly interconnected cluster of MCPs, of which thrombospondin 1 (TSP1) was most prominently downregulated and exhibited dose-dependent reductions in protein levels. These results demonstrate that methadone exposure during early cortical development alters transcriptional programs associated with synaptogenesis, and that these changes arise by functionally modulating extra-synaptic molecular mechanisms in the ECM and cilia. Our findings provide novel insight into the molecular underpinnings of methadone's putative effect on cognitive and behavioral development and a basis for improving interventions for maternal opioid addiction.


Assuntos
Transtornos Relacionados ao Uso de Opioides , Síndrome de Abstinência a Substâncias , Humanos , Feminino , Gravidez , Lactente , Metadona/farmacologia , Metadona/uso terapêutico , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Encéfalo , Tratamento de Substituição de Opiáceos/métodos
4.
Mol Brain ; 15(1): 83, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224601

RESUMO

Alzheimer's disease (AD) manifested before age 65 is commonly referred to as early-onset AD (EOAD) (Reitz et al. Neurol Genet. 2020;6:e512). While the majority (> 90%) of EOAD cases are not caused by autosomal-dominant mutations in PSEN1, PSEN2, and APP, they do have a higher heritability (92-100%) than sporadic late-onset AD (LOAD, 70%) (Wingo et al. Arch Neurol. 2012;69:59-64, Fulton-Howard et al. Neurobiol Aging. 2021;99:101.e1-101.e9). Although the endpoint clinicopathological changes, i.e., Aß plaques, tau tangles, and cognitive decline, are common across EOAD and LOAD, the disease progression is highly heterogeneous (Neff et al. Sci Adv Am Assoc Adv Sci. 2021;7:eabb5398). This heterogeneity, leading to temporally distinct age at onset (AAO) and stages of cognitive decline, may be caused by myriad combinations of distinct disease-associated molecular mechanisms. We and others have used transcriptome profiling in AD patient-derived neuron models of autosomal-dominant EOAD and sporadic LOAD to identify disease endotypes (Caldwell et al. Sci Adv Am Assoc Adv Sci. 2020;6:eaba5933, Mertens et al. Cell Stem Cell. 2021;28:1533-1548.e6, Caldwell et al. Alzheimers Demen. 2022). Further, analyses of large postmortem brain cohorts demonstrate that only one-third of AD patients show hallmark disease endotypes like increased inflammation and decreased synaptic signaling (Neff et al. Sci Adv Am Assoc Adv Sci. 2021;7:eabb5398). Areas of the brain less affected by AD pathology at early disease stages-such as the primary visual cortex-exhibit similar transcriptomic dysregulation as those regions traditionally affected and, therefore, may offer a view into the molecular mechanisms of AD without the associated inflammatory changes and gliosis induced by pathology (Haroutunian et al. Neurobiol Aging. 2009;30:561-73). To this end, we analyzed AD patient samples from the primary visual cortex (19 EOAD, 20 LOAD) using transcriptomic signatures to identify patient clusters and disease endotypes. Interestingly, although the clusters showed distinct combinations and severity of endotypes, each patient cluster contained both EOAD and LOAD cases, suggesting that AAO may not directly correlate with the identity and severity of AD endotypes.


Assuntos
Doença de Alzheimer , Idade de Início , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Perfilação da Expressão Gênica , Humanos , Transcriptoma/genética
5.
Exp Mol Med ; 54(6): 777-787, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35672450

RESUMO

At high altitude Andean region, hypoxia-induced excessive erythrocytosis (EE) is the defining feature of Monge's disease or chronic mountain sickness (CMS). At the same altitude, resides a population that has developed adaptive mechanism(s) to constrain this hypoxic response (non-CMS). In this study, we utilized an in vitro induced pluripotent stem cell model system to study both populations using genomic and molecular approaches. Our whole genome analysis of the two groups identified differential SNPs between the CMS and non-CMS subjects in the ARID1B region. Under hypoxia, the expression levels of ARID1B significantly increased in the non-CMS cells but decreased in the CMS cells. At the molecular level, ARID1B knockdown (KD) in non-CMS cells increased the levels of the transcriptional regulator GATA1 by 3-fold and RBC levels by 100-fold under hypoxia. ARID1B KD in non-CMS cells led to increased proliferation and EPO sensitivity by lowering p53 levels and decreasing apoptosis through GATA1 mediation. Interestingly, under hypoxia ARID1B showed an epigenetic role, altering the chromatin states of erythroid genes. Indeed, combined Real-time PCR and ATAC-Seq results showed that ARID1B modulates the expression of GATA1 and p53 and chromatin accessibility at GATA1/p53 target genes. We conclude that ARID1B is a novel erythroid regulator under hypoxia that controls various aspects of erythropoiesis in high-altitude dwellers.


Assuntos
Doença da Altitude , Proteínas de Ligação a DNA , Fatores de Transcrição , Doença da Altitude/genética , Doença da Altitude/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença Crônica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eritropoese/genética , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Alzheimers Dement ; 18(11): 2117-2130, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35084109

RESUMO

While amyloid-ß (Aß) plaques are considered a hallmark of Alzheimer's disease, clinical trials focused on targeting gamma secretase, an enzyme involved in aberrant Aß peptide production, have not led to amelioration of AD symptoms or synaptic dysregulation. Screening strategies based on mechanistic, multi-omics approaches that go beyond pathological readouts can aid in the evaluation of therapeutics. Using early-onset Alzheimer's (EOFAD) disease patient lineage PSEN1A246E iPSC-derived neurons, we performed RNA-seq to characterize AD-associated endotypes, which are in turn used as a screening evaluation metric for two gamma secretase drugs, the inhibitor Semagacestat and the modulator BPN-15606. We demonstrate that drug treatment partially restores the neuronal state while concomitantly inhibiting cell cycle re-entry and dedifferentiation endotypes to different degrees depending on the mechanism of gamma secretase engagement. Our endotype-centric screening approach offers a new paradigm by which candidate AD therapeutics can be evaluated for their overall ability to reverse disease endotypes.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Placa Amiloide/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo
7.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188013

RESUMO

Identifying the systems-level mechanisms that lead to Alzheimer's disease, an unmet need, is an essential step toward the development of therapeutics. In this work, we report that the key disease-causative mechanisms, including dedifferentiation and repression of neuronal identity, are triggered by changes in chromatin topology. Here, we generated human induced pluripotent stem cell (hiPSC)-derived neurons from donor patients with early-onset familial Alzheimer's disease (EOFAD) and used a multiomics approach to mechanistically characterize the modulation of disease-associated gene regulatory programs. We demonstrate that EOFAD neurons dedifferentiate to a precursor-like state with signatures of ectoderm and nonectoderm lineages. RNA-seq, ATAC-seq, and ChIP-seq analysis reveals that transcriptional alterations in the cellular state are orchestrated by changes in histone methylation and chromatin topology. Furthermore, we demonstrate that these mechanisms are observed in EOFAD-patient brains, validating our hiPSC-derived neuron models. The mechanistic endotypes of Alzheimer's disease uncovered here offer key insights for therapeutic interventions.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Cromatina/genética , Humanos , Mutação , Neurônios
8.
Genes Dev ; 28(19): 2120-33, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274725

RESUMO

A hallmark of the inflammatory response to pathogen exposure is the production of tumor necrosis factor (TNF) that coordinates innate and adaptive immune responses by functioning in an autocrine or paracrine manner. Numerous molecular mechanisms contributing to TNF production have been identified, but how they function together in macrophages remains unclear. Here, we pursued an iterative systems biology approach to develop a quantitative understanding of the regulatory modules that control TNF mRNA synthesis and processing, mRNA half-life and translation, and protein processing and secretion. By linking the resulting model of TNF production to models of the TLR-, the TNFR-, and the NFκB signaling modules, we were able to study TNF's functions during the inflammatory response to diverse TLR agonists. Contrary to expectation, we predicted and then experimentally confirmed that in response to lipopolysaccaride, TNF does not have an autocrine function in amplifying the NFκB response, although it plays a potent paracrine role in neighboring cells. However, in response to CpG DNA, autocrine TNF extends the duration of NFκB activity and shapes CpG-induced gene expression programs. Our systems biology approach revealed that network dynamics of MyD88 and TRIF signaling and of cytokine production and response govern the stimulus-specific autocrine and paracrine functions of TNF.


Assuntos
Comunicação Autócrina/fisiologia , Modelos Biológicos , Comunicação Parácrina/fisiologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Regulação da Expressão Gênica , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Biologia de Sistemas , Fator de Necrose Tumoral alfa/genética
9.
Mol Immunol ; 48(4): 516-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21074271

RESUMO

The homodimeric, activating natural killer cell receptor NKG2D interacts with multiple monomeric ligands polyspecifically, yet without central conformational flexibility. Crystal structures of multiple NKG2D-ligand interactions have identified the NKG2D tyrosine pair Tyr 152 and Tyr 199 as forming multiple specific but diverse interactions with MICA and related proteins. Here we systematically altered each tyrosine to tryptophan, phenylalanine, isoleucine, leucine, valine, serine, and alanine to measure the effect of mutation on affinity and thermodynamics for binding a range of similar ligands: MICA, the higher-affinity ligand MICB, and MICdesign, a high-affinity version of MICA that shares all NKG2D contact residues with MICA. Affinity and residue size were related: tryptophan could often substitute for tyrosine without loss of affinity; loss of the tyrosine hydroxyl through mutation to phenylalanine was tolerated more at position 152 than 199; and the smallest residues coincide with lowest affinities in general. NKG2D mutant van't Hoff binding thermodynamics generally show that substitution of other residues for tyrosine causes a moderate positive or flat van't Hoff slope consistent with moderate loss of binding enthalpy. One set of NKG2D mutations caused MICA to adopt a positive van't Hoff slope corresponding to absorption of heat, and another set caused MICB to adopt a negative slope of greater heat release than wild-type. MICdesign shared one example of the first set with MICA and one of the second set with MICB. When the NKG2D mutation affinities were arranged according to change in nonpolar surface area and compared to results from specific antibody-antigen and protein-peptide interactions, it was found that hydrophobic surface loss in NKG2D reduced binding affinity less than reported in the other contexts. The hydrophobic effect at the center of the NKG2D binding appears more similar to that at the periphery of an antibody-antigen binding site than at its center. Therefore the polyspecific NKG2D binding site is more tolerant of structural alteration in general than either an antibody-antigen or protein-peptide binding site, and this tolerance may adapt NKG2D to a broad range of protein surfaces with micromolar affinity.


Assuntos
Mutação/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/química , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Tirosina/genética , Tirosina/metabolismo , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Solventes , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...